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Abstract. Climate models predict that tropical lower stratospheric humidity will increase as the climate warms, with important

implications for the chemistry and climate of the atmosphere. We analyze the trend in 21st-century simulations from 12 state-

of-the-art chemistry-climate models (CCMs) using a linear regression model to determine the factors driving the trends. Within

CCMs, the long-term trend in humidity is primarily driven by warming of the troposphere. This is partially offset in most CCMs

by an increase in the strength of the Brewer-Dobson circulation, which tends to cool the tropical tropopause layer (TTL). We5

also apply the regression model to individual decades from the 21st century CCM runs and compare them to observations.

Many of the CCMs, but not all, compare well with observations, lending credibility to their predictions. One notable deficiency

in most CCMs is that they underestimate the impact of the quasi-biennial oscillation on lower stratospheric humidity. Our

analysis provides a new and potentially superior way to evaluate model trends in lower stratospheric humidity.

1 Introduction10

Variations of stratospheric water vapor can impact both the climate and chemistry of the atmosphere. Because of this, under-

standing the processes that control the humidity of air entering the tropical lower stratosphere (hereafter [H2O]entry) has been

a high priority of the scientific community since Brewer (1949) first described the stratospheric circulation.

It is now well established that the fundamental control over [H2O]entry comes from the cold temperatures found in the

tropical tropopause layer (TTL) (Fueglistaler et al., 2009b) and that variability in these temperatures translates into variability15

in [H2O]entry. The most well-known example of this is the so-called “tape recorder,” in which the seasonal cycle in TTL

temperatures is imprinted on tropical stratospheric water vapor (Mote et al., 1996).

On interannual time scales, variability in [H2O]entry originates from processes such as the Brewer-Dobson Circlation (BDC)

and the quasi-biennial oscillation (QBO). More recently, Dessler et al. (2013, 2014) has suggested that the temperature of the
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troposphere also exerts an influence on [H2O]entry. This implies the existence of a stratospheric water vapor feedback, whereby

a warming climate would increase stratospheric water vapor, leading to further warming.

Putting these factors together, Dessler et al. (2013, 2014) demonstrated that observed [H2O]entry could be accurately repro-

duced with a simple linear model:

[H2O]entry = β0 +β∆T ∆T +βBDCBDC +βQBOQBO+ ε (1)5

Where ∆T is the temperature of the troposphere, BDC is the strength of the Brewer-Dobson circulation, QBO represents

the phase of the QBO, and epsilon is the residual. As expected, they found that a stronger BDC, which tends to cool the TTL,

reduces [H2O]entry; this is consistent with previous analyses (Brewer, 1949; Randel et al., 2006; Castanheira et al., 2012;

Fueglistaler et al., 2014; Gilford et al., 2016). They also found that the QBO introduces significant variability with a time scale

of a few years, also consistent with previous work (O’Sullivan and Dunkerton, 1997; Randel et al., 1998; Dunkerton, 2001;10

Fueglistaler and Haynes, 2005; Choiu et al., 2006; Liang et al., 2011; Castanheira et al., 2012; Khosrawi et al., 2013; Kawatani

et al., 2014; Tao et al., 2015). Finally, a warmer troposphere tends to increase [H2O]entry, although whether this is through

influence on TTL temperatures or some other mechanism, such as convective ice lofting, is not clear.

Virtually all climate models predict that [H2O]entry will increase as the climate warms. Dessler et al. (2013) analyzed one

chemistry-climate model (CCM) to better understand this trend (CCMs are similar to general circulation models, but with15

a more realistic stratosphere and higher vertical resolution in the TTL) and found that the regression model worked well in

reproducing the CCM’s [H2O]entry trend over the 21st century. They further found that the increase in [H2O]entry was driven

by the increase in tropospheric temperatures, which was partially offset by a strengthening BDC.

Dessler et al. (2013)’s analysis provided a novel way to examine the regulation of [H2O]entry in CCMs and compare it to

observations. The purpose of this paper is to use this technique to examine a set of CCMs, with the goal of providing insight20

into the realism of the models.

2 Models

We analyze model output from 7 CCMs participating in Phase 2 of the Chemistry-Climate Model Validation Project (CCMVal-

2) (Morgenstern et al. (2010); SPARC (2010)) and output from 5 CCMs participating in Phase 1 of the Chemistry-Climate

Model Initiative (CCMI-1) (Morgenstern et al. (2016)). Table 1 lists the models.25

We use simulations from the REF-B2 scenario of CCMVal-2. In this scenario, greenhouse gas concentrations during the 21st

century come from the A1B scenario, which lies in the middle of the SRES scenarios (IPCC, 2001). Ozone-depleting substance

come from the halogen emission scenario A1 described by (WMO, 2007). CCMVal-2 specifics can be found inSPARC (2010)

and Morgenstern et al. (2010). We use the refC2 scenario of the CCMI-1. In this scenario, greenhouse gas concentrations

come from the RCP 6.0 scenario (Meinshausen et al., 2011) and ozone-depleting substances come from the halogen emission30

scenario A1 described described by (WMO, 2014). CCMI-1 model specifics can be found in Morgenstern et al. (2016). In
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order to maintain a consistent reference period between models, our analysis covers 2000-2097, which we will hereafter refer

to as “the 21st century ”.

For each model, we fit CCM [H2O]entry using the multivariate linear regression (MLR) model described above. We use

tropical average 80-hPa water vapor volume mixing ratio anomaly as a proxy for [H2O]entry (all tropical averages in this

paper are averages over 30°N-30°S; anomalies are calculated by subtracting off the mean annual cycle from the time series).5

For our BDC index, we use 80-hPa diabatic heating rate anomalies (see Fueglistaler et al. (2009a) for details). The tropospheric

temperature index is the 500-hPa tropical average temperature anomaly, and for the few CCMI-1 simulations that only produce

variables on hybrid pressure levels (CMAM, CCSRNIES-MIROC3.2, and MRI-ESM1r1), we choose a hybrid pressure level

close to the 500-hPa pressure surface (See Table 1). All of these choices are similar to those used by Dessler et al. (2013, 2014).

For the QBO index, we take the standardized anomaly of equatorial 50-hPa zonal winds. By examining 21st century 50 hPa10

zonal winds (shown in supplement figures), we find that only 5 of the 12 models simulate a QBO (table 1). As a result, we do

not expect the QBO to significantly impact [H2O]entry in all of the models.

The MLR returns the coefficients for each regression coefficient in Equation 1, along with an uncertainty for each coefficient.

Unless otherwise noted, we use 95%-confidence intervals in this paper. Autocorrelation of the time series is accounted for in

the uncertainties following Santer et al. (2000).15

3 Century Analysis

We first analyze the long-term trend in [H2O]entry over the 21st century. To do this, we calculate annual average values of

[H2O]entry and perform a MLR against annual averages of the indices for BDC, QBO and ∆T . All annual averages time series

have had the 2000-2010 average subtracted out.

Figure 1 shows that the fits to most of the models generate adjusted R2 values greater than 0.8. The NIWA-UKCA century20

MLR has the lowest adjusted R2, with a value of approximately 0.6. Overall, this result confirms the result of Dessler et al.

(2013) that the regression model does an excellent job reproducing the models’ [H2O]entry. Because we have left long-term

trends in the time series, we will refer to this as the “trended analysis”.

3.1 Detrended 21st Century

One concern with the trended analysis is that the [H2O]entry time series, the BDC, and ∆T indices are all dominated by25

long-term trends. In such a case, an MLR may produce a high adjusted R2 even if there is no actual relation between the

variables. To eliminate the influence of long-term trends on adjusted R2, we detrend each variable using a Fourier Transform

filter (Donnelly, 2006) to remove long-term variability (> 10 years). We then use the MLR on the detrended [H2O]entry and

the detrended indices. Detrending by removing the long-term linear trend yields similar results.

Figure 1 shows the adjusted R2 for the detrended calculation. For most of the models, the adjusted R2 for the detrended30

MLR is only slightly smaller than that for the trended one. This confirms that the long-term trends in the data tend to inflate

the adjusted R2, at least a bit, and also that the models’ interannual variability and long-term trends are well represented by
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the same linear model (Equation 1). Large differences do exist for some CCMs. For instance, the CCSRNIES trended century

MLR captures approximately 90% of the variance in [H2O]entry, while the detrended century MLR only explains about 40%

of interannual variance; the CNRM-CM5-3, NIWA-UKCA, and WACCM show something similar.

3.2 Physical Process Effects

The coefficients from the trended and detrended calculations are listed in Tables 2 and 3 respectively. The product of the re-5

gression coefficient and its index quantifies that process’ impact on [H2O]entry. As an example, MRI [H2O]entry increases by

about 1.2 ppmv during the 21st century (Figure 2). The regression shows that this is the result of a large increase in [H2O]entry

due to ∆T increases ( 1.5 ppmv) that is offset by a strengthening BDC, which reduces [H2O]entry by approximately 0.3 ppmv;

this is consistent with the results of Dessler et al. (2013). The regression finds virtually no change in [H2O]entry in response

to the QBO, which does not comport with analyses of observations, which suggests that the QBO causes short-term variations10

in [H2O]entry of 0.3 ppmv (Dessler et al., 2014)

Figure 3 shows that [H2O]entry increases as ∆T increases in all models and that the ∆T regression coefficients are similar

for both trended and detrended MLRs. On average, [H2O]entry increases by about 0.3±0.1 ppmv K−1, with individual models

yielding values ranging from about 0.1 to 0.6 ppmv K−1. This confirms that the stratospheric water vapor feedback identified

by Dessler et al. (2013) occurs in all CCMs, although the exact magnitude varies.15

This figure also shows that the BDC coefficient is generally negative, meaning that a strengthening BDC reduces [H2O]entry.

This is consistent with previous research, which showed that a stronger BDC reduces TTL temperatures and lower stratospheric

water vapor (Randel et al., 2006; Gilford et al., 2016). The trended and detrended BDC coefficients are similar in sign and

magnitude. Two models (CNRM-CM5-3 and NIWA-UKCA) yield positive BDC coefficients, indicating potential problems

with these models.20

Figure 3 shows that all QBO regression coefficients are small, generally within ± 0.04 ppmv, with even the sign of the

effect in doubt. Interestingly, one of the CCMs not simulating a QBO, CMAM-CCMI, produces the largest QBO regression

coefficients of 0.082 ±0.04 and 0.077 ±0.04 ppmv for the trended and detrended calculations, respectively. Among CCMs

that do simulate a QBO, the ensemble average QBO regression coefficient does not differ much from the same quantity

(approximately 0 ppmv) for the other models. We will discuss this further in the next section.25

4 Decadal Analysis

Ideally, we would compare the results of the last section to observations. Unfortunately, we don’t have 100 years of observations

to test the models against. Instead, we will compare regressions of 10-year segments from the CCMs to regressions of 10-years

of observations.

Specifically, we split 21st century of each CCM run into 10 decades (2000-2010, 2010-2020, 2020-2030, 2040-2050, etc.)30

and fit each individual decade using the regression model (Equation 1). The regression calculation used on each 10-year

segment is identical to the century analysis, except monthly averaged anomalies are used instead of annual mean anomalies.
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Following Dessler et al. (2014), decadal regression terms are lagged in order to maximize MLR fit: we lag ∆T by 3 months,

the BDC by 1 month, and the QBO by 3 months. These lags reflect the time between changes in each index and the impact on

[H2O]entry.

Figure 4 shows the median ± one standard deviation of the ten decadal adjusted R2 values generated by each CCM. The

ensemble average is approximately 0.6±0.25, with some spread among the models. Also plotted are the adjusted R2 from5

two regressions of the tropical average Aura Microwave Limb Sounder (MLS) 82-hPa water vapor mixing ratio observations

from Dessler et al. (2014). One regression uses Modern-Era Retrospective Analysis for Research and Applications reanalysis

(MERRA) data (Rienecker et al., 2011) and the other uses European Centre for Medium-Range Weather Forecasts interim re-

analysis (ERAI) (Dee et al., 2011) for the ∆T and BDC indices; the QBO index is standardized anomaly of monthly and zonally

averaged equatorial 50-hPa winds obtained from the NOAA Climate Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices).10

The MLS data covers the time period 2004-2014.

Many of the models have a range of adjusted R2 values that overlaps with the observational regression However, not all do:

the CCSRNIES, CNRM-CM5-3, and NIWA-UKCA have median decadal adjusted R2 values below 0.4, well below the obser-

vational values. It’s worth nothing that these models also had issues in the century regressions. The WACCM and LMDZrepro

models also have median adjusted R2 values below the observations.15

Figure 5 shows the median and one standard deviation of each coefficient (values are listed in table 4), along with the

coefficients from the regression of the MLS data (taken from Dessler et al. (2014)). We find that the CCMs agree unanimously

that increases in ∆T are associated with increased [H2O]entry. Overall, though, the CCM ensemble tends to underestimate the

observational estimate, although most fall within the observation’s 95% confidence intervals. The only models that don’t fall

within both observational ranges are CCSRNIES, CMAM-CCMI, and CNRM-CM5-3.20

In addition, the spread between the different decades for a single model tends to be small, with most CCM decadal ∆T

regression coefficient distributions confined to a narrow range of ±0.1 ppmv K−1 around the model’s median. This gives us

some confidence that the comparison between the CCMs and one decade of observations is meaningful.

Figure 5 shows that there exists a high degree of variability in the CCMs’ decadal BDC regression coefficients, with a CCM

ensemble average value of about -4±2 ppmv (K/Day)−1, but with individual CCM values ranging between approximately -1225

and +5 ppmv (K/Day)−1. On all timescales, we expect a strengthening BDC should cool the TTL and reduce [H2O]entry, so

the coefficient should be negative. We see that the median is indeed negative for all CCMs except for the CNRM-CM5-3 and

NIWA-UKCA, both of which yield a positive median BDC coefficient (these models also generated positive BDC coefficients

for the century analysis).

Comparing to observations, we find that the model ensemble does well. This nonetheless hides a significant spread among30

the models. The CCSRNIES, CCSRNIES-MIROC-3.2, CMAM, CMAM-CCMI, LMDZrepro, MRI-ESM1r1, and WACCM

decadal BDC regression coefficients fall within 95% confidence of MERRA, and only CCSRNIES-MIROC-3.2, LMDZrepro,

and WACCM fall within 95% confidence interval of ERAI. As with the ∆T coefficient, the spread between the different

decades for a single model tends to be small; this again gives us some confidence in our comparisons to analysis of a single

decade of observations.35
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As expected, figure 5 shows that, for CCMs not simulating a QBO, the ensemble average decadal QBO coefficient is ap-

proximately 0 ppmv. But even those that do simulate a QBO, as seen in the century analysis, see little impact on [H2O]entry

from it, with an ensemble average of approximately 0.03±0.04 ppmv. This is significantly smaller than the response to the

QBO in the observations, and this appears to be a clear deficiency in the model ensemble.

Only CCSRNIES-MIROC3.2 and CMAM-CCMI decadal regressions produce QBO coefficients approaching those from5

both observational regressions. Again, CMAM-CCMI does not simulate a QBO, and it is not clear to us why the model does

so well in this aspect of our analysis.

Previous studies found that the QBO significantly influences TTL temperatures and subsequently [H2O]entry (Zhou et al.,

2001; Geller et al., 2002; Liang et al., 2011), so the lack of response in the model ensemble seems to be a problem for the

models. Previous studies have investigated this issue finding that a higher vertical resolution within the stratosphere can help10

resolve the QBO’s impact on the lower stratosphere (Rind et al., 2014; Anstey et al., 2016; Geller et al., 2016). Clearly, this

needs to be investigated further.

5 Century and Decadal Regression Coefficient Comparison

One interesting question is whether the regression coefficients from the decadal analyses are related to regression coefficients

from century regressions. To answer this, Figure 6 shows the coefficients from the trended century regressions of each CCM15

plotted against the median of the decadal regressions from the same CCM. Also shown is a linear least-squares fit to the points.

As in the last section, uncertainties in the observational coefficients are bound by 95% confidence intervals calculated by

Dessler et al. (2014). Uncertainty in the slope, intercept, and century regression predictions are constrained by 95% confidence

intervals determined using each least-squares fit.

For the ∆T coefficient, the best fit line is:20

β(∆T,century) = 1.21± 0.44β(∆T,decade) + 0.13± 0.08 (2)

Thus, the ∆T coefficients from the trended MLRs are slightly larger than those from the decadal MLRs. Using values

of β(∆T,decade) from decadal observations and this fit, we can predict β(∆T,century). From equation 2, the observed

β(∆T,decade) correspond to β(∆T,century) of 0.50 ±0.06 and 0.55 ±0.08 ppmv K−1 for MERRA and ERAI indices,

respectively.25

For the BDC coefficient, the best fit line is:

β(BDC,century) = 1.16± 0.32β(BDC,decade) + 0.56± 1.56 (3)

The BDC coefficients from the trended MLRs are also slightly larger than those from the decadal MLRs. By fitting the observed

values of β(BDC,decade) through equation 3, we can predict β(BDC,century). Using equation 3, the observed values of

β(BDC,decade) correspond to β(BDC,century) of -3.45 ±1.09 and -2.34 ±1.09 ppmv (K/Day)−1 for MERRA and ERAI30

indices, respectively.
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For the QBO coefficient, the best fit line is:

β(QBO,century) = 0.75± 0.40β(QBO,decade) + 0.004± 0.01 (4)

The QBO coefficients from the trended MLRs are slightly smaller than those from the decadal MLRs. Again, using equation

4, we can predict β(QBO,century) using observed values of β(QBO,decade). Using equation 4, the observed values of

β(QBO,decade) correspond to β(QBO,century) of 0.09 ±0.03 and 0.09 ±0.02 ppmv for MERRA and ERAI indices,5

respectively.

6 Conclusions

Climate models predict that tropical lower stratospheric humidity ([H2O]entry) will increase as the climate warms, with impor-

tant implications for the chemistry and climate of the atmosphere. We described in this paper a new way to evaluate the realism

of these model trends. Our method is based on regressing CCM [H2O]entry time series against three processes (tropospheric10

temperature (∆T ), the strength of the Brewer-Dobson circulation (BDC), and the phase of the QBO) that have been shown to

be important to [H2O]entry. We do this on two separate time-scales: 1) the 21st century, and 2) on decadal timescales.

We find that long-term increase in [H2O]entry in the CCMs is primarily driven by warming of the troposphere. This is

partially offset in most CCMs by an increase in the strength of the Brewer-Dobson circulation, which tends to cool the tropical

tropopause layer (TTL). The models show little impact from the QBO, in disagreement with observations; this appears to be a15

deficiency in the models.

The coefficients from regressions of individual decades in the CCMs can be compared to coefficients from regressions of

observations covering a decade. Overall, the CCM ensemble seems to reproduce observations well, except for the fact that

the CCMs simulate little response of [H2O]entry to the QBO, in disagreement with the observations. In addition, the good

agreement on average hides some spread among the models, particularly in the response to the BDC.20

Our approach provides more insight into model processes than simply comparing [H2O]entry or TTL temperatures. Our

overall conclusions are encouraging — the models appear do a reasonable job simulating variability in [H2O]entry. However,

some models have clear problems, e.g., the models that predict [H2O]entry will increase with a strengthening BDC. In addition,

nearly the entire ensemble does not reproduce the observed variations of [H2O]entry with the phase of the QBO. This analysis

should help the modeling groups refine their models’ simulations of the 21st century.25
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Table 1. CCMs used in this analysis. The resolution is listed as (lat x lon x number of pressure levels). 31 vertical levels indicates CCM data

is given on isobaric levels, while CCMs simulating data on >31 levels are given on sigma (hybrid-pressure) levels

Chemistry Climate Model Properties

CCM Resolution Dataset Contains QBO Institution

CCSRNIES 2.8◦ x 2.8◦ x 31 CCMVal-2 No NIES, Tsukuba, Japan

CCSRNIES-

MIROC3.2

2.8◦ x 2.8◦ x 34 CCMI-1 Yes NIES, Tsukuba, Japan

CMAM 5.5◦ x 5.6◦ x 31 CCMVal-2 No EC, Canada

CMAM-CCMI 3.7◦ x 3.8◦ x 71 CCMI-1 No EC, Canada

CNRM-CM5-3 2.8◦ x 2.8◦ x 31 CCMI-1 No Meteo-France; France

GEOSCCM 2.0◦ x 2.5◦ x 31 CCMVal-2 No NASA/GSFC, USA

GEOSCCM-CCMI 2.0◦ x 2.5◦ x 72 CCMI-1 Yes NASA/GSFC, USA

LMDZrepro 2.5◦ x 3.8◦ x 31 CCMVal-2 No IPSL, France

MRI 2.8◦ x 2.8◦ x 31 CCMVal-2 Yes MRI, Japan

MRI-ESM1r1 2.8◦ x 2.8◦ x 80 CCMI-1 Yes MRI, Japan

NIWA-UKCA 2.5◦ x 3.8◦ x 31 CCMI-1 Yes NIWA, NZ

WACCM 1.9◦ x 2.5◦ x 31 CCMVal-2 No NCAR, USA
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Table 2. Coefficients from regressions of trended [H2O]entry time series

Trended Regression Coefficients

CCM ∆T BDC QBO

CCSRNIES 0.06±0.01 -0.67±0.95 1.7x10−2±0.01

CCSRNIES-

MIROC3.2

0.40±0.06 -3.4±1.9 3.5x10−2±0.04

CMAM 0.26±0.02 -5.7±1.1 8.0x10−4±0.03

CMAM-CCMI 0.22±0.05 -3.8±2.6 8.2x10−2±0.04

CNRM-CM5-3 0.27±0.13 3.7±5.4 1.9x10−2±0.07

GEOSCCM 0.38±0.03 -6.7±0.82 -1.3x10−2±0.01

GEOSCCM-CCMI 0.27±0.03 -6.6±0.96 5.2x10−3±0.02

LMDZrepro 0.55±0.04 -8.3±2.1 1.4x10−2±0.04

MRI 0.57±0.03 -12.±1.3 -4.1x10−3±0.03

MRI-ESM1r1 0.36±0.05 -3.1±1.4 1.7x10−2±0.03

NIWA-UKCA 0.20±0.07 4.3±4.6 -1.0x10−2±0.07

WACCM 0.24±0.04 -3.5±1.2 1.5x10−2±0.03

The units of ∆T , BDC, and QBO are ppmv K−1, ppmv (K/Day)−1, and ppmv. The uncertainty is the 95% confidence interval.
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Table 3. Coefficients from regressions of detrended [H2O]entry time series

Detrended Regression Coefficients

CCM ∆T BDC QBO

CCSRNIES 0.05±0.02 -0.67±0.67 1.7x10−2±0.01

CCSRNIES-

MIROC3.2

0.30±0.05 -4.3±0.83 2.8x10−2±0.01

CMAM 0.26±0.03 -5.3±0.84 7.0x10−4±0.02

CMAM-CCMI 0.26±0.05 -3.7±1.1 7.7x10−2±0.04

CNRM-CM5-3 0.19±0.05 0.20±1.1 -3.3x10−2±0.01

GEOSCCM 0.31±0.04 -6.6±0.65 -1.0x10−2±0.01

GEOSCCM-CCMI 0.25±0.04 -7.1±0.71 4.4x10−3±0.01

LMDZrepro 0.59±0.05 -5.4±1.1 -5.5x10−3±0.03

MRI 0.52±0.03 -11.±1.0 -4.6x10−4±0.02

MRI-ESM1r1 0.33±0.05 -4.3±0.61 5.5x10−3±0.01

NIWA-UKCA 0.15±0.08 2.9±1.6 -1.0x10−2±0.02

WACCM 0.23±0.05 -3.5±0.80 1.5x10−2±0.02

The units of ∆T , BDC, and QBO are ppmv K−1, ppmv (K/Day)−1, and ppmv. The uncertainty is the 95% confidence interval.
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Table 4. Median coefficients from the decadal regressions of [H2O]entry monthly anomalies

Decadal Regression Coefficients

CCM ∆T BDC QBO

CCSRNIES 0.03±0.04 -1.23±1.34 5.26x10−3±0.02

CCSRNIES-

MIROC3.2

0.10±0.17 -3.29±1.44 6.05x10−2±0.01

CMAM 0.19±0.09 -6.06±1.34 2.75x10−3±0.03

CMAM-CCMI 0.01±0.10 -4.70±1.29 6.13x10−2±0.01

CNRM-CM5-3 0.06±0.14 2.89±1.44 1.84x10−2±0.02

GEOSCCM 0.17±0.10 -6.31±1.19 -1.47x10−2±0.03

GEOSCCM-CCMI 0.11±0.16 -8.00±1.89 2.42x10−2±0.02

LMDZrepro 0.31±0.19 -2.71±2.71 1.27x10−2±0.01

MRI 0.35±0.09 -8.78±2.91 -6.56x10−3±0.06

MRI-ESM1r1 0.19±0.12 -4.72±0.71 1.17x10−2±0.03

NIWA-UKCA 0.05±0.29 2.11±3.26 -1.88x10−2±0.04

WACCM 0.15±0.12 -2.25±0.85 3.84x10−2±0.03

MLS/ERAI 0.34±0.17 -2.5±0.83 1.1x10−1±0.04

MLS/MERRA 0.30±0.20 -3.5±1.6 1.2x10−1±0.05

The units of ∆T , BDC, and QBO are ppmv K−1, ppmv (K/Day)−1, and ppmv. The uncertainty represents the variability (one standard

deviation) in the set of coefficients produced by each CCM. For observations, the error bars represent 95% confidence.
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Figure 1. Bars corresponds to trended (light grey) and detrended (dark grey) adjusted R2 values for annual-averaged data. The light grey

circle represents the CCM ensemble mean trended adjusted R2 value, while the dark grey circle represents to the CCM ensemble mean

detrended adjusted R2 value. Error bars on ensemble means corresponds to the ± one standard deviation of the CCM ensemble.
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Figure 2. Time series of annual-averaged anomalies of [H2O]entry from the MRI (black), and its reconstruction using a multivariate linear

regression (brown). The red, green, and blue lines are the ∆T , BDC, and QBO terms from the regression, respectively.
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Figure 3. Circles represents the detrended (light grey) and trended (dark grey) coefficients for each model, and error bars correspond to

95th percentile confidence interval bounding each regression coefficient. An asterisk indicates models simulating a QBO. An asterisk on

the ensemble mean corresponds to the average QBO coefficient for only models simulating a QBO, while the ensemble mean with no

asterisk corresponds to the average of all model coefficients. The ensemble mean coefficients are also represented by a circle, with associated

error bars correspond to ±one standard deviation of the ensemble set of coefficients. The units of β∆t,βBDC , and βQBO are ppmv/K,

ppmv/(K/Day), and ppmv, respectively.
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Figure 4. Circles represent the median of the adjusted R2 value of the decadal fits. Errors correspond to the ± one standard deviation of the

adjusted R2 values. The CCM ensemble average is also plotted, along with error bars corresponding to± one standard deviation of ensemble

set of decadal adjusted R2 values. The lines are adjusted R2 values from observations combined with reanalysis (ERAI (dotted) and MERRA

(dashed)) from Dessler et al. (2014).
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Figure 5. Circles represent the median decadal regression coefficient from each CCM, and error bars correspond to± one standard deviation.

An asterisk indicates that the model simulates a QBO. An asterisk corresponding to the ensemble mean corresponds to the average QBO

coefficient for only models simulating a QBO, while the ensemble mean with no asterisk corresponds to an average of all model coefficients.

The ensemble mean coefficients are also represented by a circle, with associated error bars correspond to ±one standard deviation of the

ensemble set of coefficients. Estimates from observations combined with reanalysis (Dessler et al., 2014) shown, along with 95th percentile

confidence interval. The units of β∆t,βBDC , and βQBO are ppmv/K, ppmv/(K/Day), and ppmv, respectively.
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Figure 6. (Top Left) Scatter plots of trended ∆T regression coefficients (ppmv K−1) vs. median decadal ∆T regression coefficients (ppmv

K−1) from each CCM. (Top Right) Same as top, but for BDC coefficients. (Bottom Middle) Same as top left and top right, but for QBO

coefficient . Black lines in all plots correspond to a best fit line between the trended and decadal coefficients, and the observational coefficients

ERAI (square) and MERRA (diamond) are fitted to each line (from Dessler et al. (2014)).
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